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Air pollution contributes to over three million deaths [1] each year. Kam-
pala has one of the highest concentrations of fine particulate matter (PM
2.5) of any African city [2]. Unfortunately, with the exception of the US
Embassy, there is no programme for monitoring air pollution in the city
due to the high cost of the equipment required. Hence we know little
about its distribution or extent. Lower cost devices do exist, but these do
not, on their own, provide the accuracy required for decision makers. We
propose that using a coregionalised Gaussian process to combine the low
cost sensors with the embassy’s high quality results provides sufficiently
accurate estimates of pollution across the city.

The air pollution data used in this study has been collected using a network of
sensors developed at Makerere University, built around the Alphasense opti-
cal particle counter [3]. The US Embassy also monitors the air pollution using
an EPA approved system which we assume provides an accurate baseline. The
aim of this project is to extrapolate outwards from the embassy by using the
correlation structure between the low-cost sensors and the embassy’s sensor.
The network is currently being commissioned and only contains a few weeks
of data.

Coregionalisation with two sensors Both models in this abstract use Gaus-
sian processes (GPs) to perform probabilistic regression. Besides providing
uncertainty quantification, GPs allow us to define priors over the covariance
between measurements. For both models we assume that the covariance can
be described with an exponentiated quadratic kernel. In this first model we
also describe covariance between two sensors using a coregionalisation ker-
nel. The inputs to the GP are simply the date and time. Its outputs are the log
of 3-hour averaged PM2.5 measurements. For comparison we repeat the GP
model fitting but with the off-diagonals of the coregionalisation matrix set to
zero, to disable coregionalisation.
To demonstrate the effectiveness of using coregionalisation we consider just
the US embassy and one static sensor, ignoring the spatial aspect. We re-
move 300 hours from the US embassy’s training set and try predicting these
values using both models. We found the RMSE decreased from 60 to 36
µg/m3 using the coregionalisation model. The results of which are shown in
Figure 1. We have selected a particularly erratic time period to illustrate the
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Figure 1: PM2.5 measurements from low-cost sensor at Makerere University (upper)
and US Embassy (lower). The lines are the predictions from the two GPs (for 12 noon,
to remove daily oscillations, inputs: date, time and sensor). The uptick in pollution
during the test-period is predicted more accurately by the coregionalised model (in
blue), than by the simple model (black-dashed). Note that although time-of-day is an
input into the model, day-of-week is not, leading to a 168-hour oscillation. Confidence
intervals are 1 std, and are non-symmetric due to the log transform.
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Figure 2: Predictions (from non-coregionalised) GP model combining all sensors. The
confidence in the predictions is indicated by the size of the squares (larger=more con-
fident). The static sensors include those at the embassy (A) and the university (B).

effectiveness, but we found an improvement in the RMSE for all tested time
periods. Intriguingly these sensors are sufficiently correlated even though
they lie nearly 5 km apart, as illustrated in Figure 2.

Spatial-temporal Model A second model is used which includes both mo-
bile and static sensors, with inputs; latitude and longitude, date, time and
distance from main roads. We aim to make coregionalised predictions across
the whole city for the Embassy’s output. Currently however, the lack of ge-
ographically distributed low-cost sensors means we are unable to determine
whether differences in measurements are due to differences in sensor-type or
differences in pollution. In lieu of the full network, therefore, we use a sim-
ple, non-coregionalised model, and assumed all the sensors provide unbiased
PM2.5 results. Figure 2 demonstrates the system+. Though incomplete, use-
ful features are already visible; the sensors near the university (B) are placed
a considerable distance from the roads, while the sensor at the embassy (A) is
nearly next to a road. This leads to more confident predictions nearer to roads
in the region around the embassy.

Conclusions We have developed a system for collecting and analysing real-
time data from a network of sensors. The use of coregionalisation allows us to
benefit from both the spatial distribution of low-cost sensors and a high preci-
sion single sensor. Once calibrated we will be able to quantify the coregion-
alisation warranted between each sensor. In future work we will introduce
active-learning to direct the mobile sensors to locations that will offer greatest
information gain, for example, to allow the coregionalisation between sensors
to be updated. We will also perform leave-one-sensor-out cross-validation to
detect sensor failure. The system aims to provide a low-cost method for mon-
itoring air quality across whole cities in resource-constrained regions.
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