

Databases and Webservers

Databases and Webservers

When you connect to a website, you will be
connecting to a webserver. This server will
access scripts, style sheets and other files and
will probably also query a database server.

● Linux
● Apache
● MySQL
● PHP

LAMP

The “LAMP stack” is
the most common
web solution stack in
use today.Webserver

Database

Script
language

Operating
System

● Linux
● Apache
● MySQL
● PHP

LAMP

The “LAMP stack” is
the most common
web solution stack in
use today.

● Open Source
● Free
● Well Supported
● Massive Adoption

Webserver

Database

Script
language

Operating
System

● Linux
● Apache
● MySQL
● PHP

but for the Advanced Programming
course...

Can't use LAMP for
this course:

Webserver

Database

Script
language

Operating
System

● Linux
● Apache
● MySQL
● PHP

but for the Advanced Programming
course...

Can't use LAMP for
this course:

● People running
windows not linuxWebserver

Database

Script
language

Operating
System

● Linux
● Apache
● MySQL
● PHP

but for the Advanced Programming
course...

Can't use LAMP for
this course:

● People running
windows not linux

● Apache and MySQL
too big to download

Webserver

Database

Script
language

Operating
System

● Linux
● Apache
● MySQL
● PHP

but for the Advanced Programming
course...

Can't use LAMP for
this course:

● People running
windows not linux

● Apache and MySQL
too big to download

● Not enough time to
cover another
language.

Webserver

Database

Script
language

Operating
System

● Windows/Linux
● python modules:

– import SocketServer

– import BaseHTTPServer

– import CGIHTTPServer

● SQLite3
● Python

So we'll use smaller alternatives:

● Solution is cross
platform

● modules already part
of python

● SQLite lightweight
● Already know Python

Webserver

Database

Script
language

Operating
System

To get started with our stack

● Download SQLite
command line tool
(this is useful for
learning SQL).

● Download the
webserver script

Checking things are working...
1. sqlite

● Open a terminal (in windows this is done by running
cmd)

● cd to the right location
● run:
● sqlite3 test.db
● type:
● .quit

● check the test.db file now exists

It's important we always use
sqlite3 and no other version
as file formats are not
compatible...

Checking things are working...
2. python simple webserver

● To check it works run the httpserver.py python program

● Visit http://127.0.0.1:8080

● Edit the demo.py script in the cgi-bin folder
– You may need to delete one or

both of the #! lines at the top of
the script depending on your
operating system.

– visit
http://127.0.0.1:8080/demo.html

Learning a bit of SQL (using SQLite)

● We are going to make a simple database of
people's favourite food and where they're from.

● Step 1: Create a database, run:
sqlite3 test.db

● Step 2: Create a table (see the sqlcheatsheet.jpg
file for help on SQL queries):

CREATE TABLE people(name
VARCHAR(200), food VARCHAR(200),
homedistrict VARCHAR(200));

Learning a bit of SQL (using SQLite)

● 3: Try inserting a row into the table:
INSERT INTO people(name, food,

homedistrict) VALUES
('bob','posho','kampala');

● 4: Check the data is there:
SELECT * FROM people;

● 5: Update the data:
UPDATE people SET homedistrict='gulu'
WHERE name='bob';

Hint: To get a more useful
output turn headers on (this
shows the names of the table
columns):
 .headers ON

Learning a bit of SQL (using SQLite)

● 6: We want to know where the districts are, add a
new table:
CREATE TABLE district(name

VARCHAR(200), lat FLOAT(10,6), long
FLOAT(10,6));

● 7: Add data:
INSERT INTO district(name, lat, long)

VALUES ('kampala',0.317, 32.583);
INSERT INTO district(name, lat, long)

VALUES ('tororo',0.75, 34.083);

Learning a bit of SQL (using SQLite)

● 8: Use a table JOIN to combine the two tables:
SELECT people.food, district.lat FROM

people INNER JOIN district ON
(people.homedistrict=district.name);

Combining the SQL server with the
webserver

● Have a look at the demo.html file and the
demo.py script, how does it work?
– 1) When you visit demo.html the HTML you get

describes a web form

– 2) the ACTION parameter tells your browser where
to submit the form. In this case to the cgi-
bin/demo.py script.

– 3) the demo.py script uses the cgi library to get out
the 'name' that was passed and prints it.

Side Note: Security and Cross Site
Scripting (XSS)

Cross-Site Scripting (XSS) attacks are a type of
injection, in which malicious scripts are injected into
otherwise trusted web sites.

XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the
form of a browser side script, to a different end user.

Flaws that allow these attacks to succeed are quite
widespread and occur anywhere a web application
uses input from a user within the output it
generates without validating or encoding it.

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

XSS continued...

● E.g.:

● Or even a script:

<body onload="alert('yeah');"></body>

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

● We want to ask the user their name, favourite food and home
district and put the results into the database.

● 1: Make a copy of the demo.py script and demo.html file, call
them: food.py and food.html.

Handy hint!!! Things won't work if you access the file directly with the
browser. For instance if you just open the file. If you've done this you'll
see file://stuff in the address bar. We want to access the file VIA THE
WEBSERVER, so we want to see: http://127.0.0.1:8080/stuff

● 2: Change the HTML to ask for the person's:
– name

– favourite food

– home district

● 3: Change the food.py script to process and display these new
values.

● 4. Setup an SQLite3 database to store the files in (the lecture
notes on how to do that are on this computer 10.10.10.94).

● 5. Modify food.py to insert these in the database.
● 6. Make a new script which lists the districts and favourite foods.

Database access from python using
sqlite3!

● First try connecting to a database...

import sqlite3 as lite
try:
 con = lite.connect('stuff.db')
 cur = con.cursor()
except lite.Error, e:
 print "Error %s:" % e.args[0]
 sys.exit(1)
if con:
 con.close()

● Second, let's try selecting stuff from the database:

import sqlite3 as lite
try:
 con = lite.connect('stuff.db')
 cur = con.cursor()
 cur.execute('SELECT something FROM
atable WHERE stuff=?',(variable,))
 data = cur.fetchone()
 if (data==None):
 print “Not found anything”
 else:
 Print “Found: “+data
except lite.Error, e:
 print "Error %s:" % e.args[0]
 sys.exit(1)
if con:
 con.close()

● Third, we could insert a row into a table...

import sqlite3 as lite
try:
 A = 4;
 B = 2;
 con = lite.connect('stuff.db')
 cur = con.cursor()
 cur.execute('INSERT INTO atable
(something, blah) VALUES (?,?)',(A,B,))
 con.commit()
except lite.Error, e:
 print "Error %s:" % e.args[0]
 sys.exit(1)
if con:
 con.close()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

