
  

Regular Expressions
Practical Example: Where does a 

page link to?
● Download the apod example (apod.html)



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the <a 

href=”link”> tags in the webpage's HTML.



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the   
<a href=”link”> tags in the webpage's 
HTML.

● Hint - Open the file with:
– content = open('apod.html','r').read()

● In future could read it from the website:
import urllib
url = 'http://apod.nasa.gov/apod/ap141001.html'
webpage = urllib.urlopen(url)
html = webpage.read()



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the    
<a href=”link”> tags in the webpage's 
HTML.

● Open the file with:
– content = open('apod.html','r').read()

● Hint – re.findall with a subexpression will 
return a list of all the examples of that 
subexpression in the input string.



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the   <a 
href=”link”> tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('<a href="(.*)">',content)

print "\n".join(a)

...
http://hubblesite.org/servicing_mission_4/
mailto:%20Francesco%20dot%20antonucci%20at%20fastwebnet%20dot%20it
http://apod.nasa.gov/apod/ap120929.html
...
http://www.phy.mtu.edu/
http://antwrp.gsfc.nasa.gov/htmltest/jbonnell/www/bonnell.html">Jerry Bonnell</a> 
(<a href="http://www.astro.umd.edu/
http://apod.nasa.gov/apod/lib/about_apod.html#srapply
..



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the   <a 
href=”link”> tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('<a href="(.*)">',content)

print "\n".join(a)

● Fix regular expression...
'<a href="(.*)">'



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the   <a 
href=”link”> tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('<a href="(.*)">',content)

print "\n".join(a)

● Fix regular expression...
'<a href="([^\'"]*)">'



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the   <a 
href=”link”> tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('<a href="(.*)">',content)

print "\n".join(a)

● Fix regular expression...
'<a href="(http[^\'"]*)">'



  

Regular Expressions:
Practical Example: Where does a 

page link to?
● Write a regular expression that looks for the   <a 
href=”link”> tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('<a href="(.*)">',content)

print "\n".join(a)

● Fix regular expression...
'<a href="(http[^\'"]*)">'

– Could also match both " and ' using ["\']?



  

Regular Expression: regex golf
puzzle 1

● buffoon

● foody

● foolish

● fool

● catfoot

● afoot

● footlights

● footmen

● seafood

● crinkle

● palace

● wildfowl

● critical

● spontaneous

● forget

● info

MATCH REJECT



  

Regular Expression: regex golf
puzzle 1

● buffoon

● foody

● foolish

● fool

● catfoot

● afoot

● footlights

● footmen

● seafood

● crinkle

● palace

● wildfowl

● critical

● spontaneous

● forget

● info

MATCH REJECT

foo



  

Regular Expression: regex golf
puzzle 2

● mick

● rick

● trick

● candlestick

● crick

● strategic

● tricked

● picked

● icky

● yickicky

MATCH REJECT



  

Regular Expression: regex golf
puzzle 2

● mick

● rick

● trick

● candlestick

● crick

● strategic

● tricked

● picked

● icky

● yickicky

MATCH REJECT

ick$



  

Regular Expression: regex golf
puzzle 3

● abac

● accede

● adead

● babe

● bead

● bebed

● bedad

● bedded

● bedead

● beam

● buoy

● canjac

● chymia

● corah

● cupula

● griece

● hafter

● idic

MATCH REJECT

letters a-f occur 
4 times or more 
in a row.



  

Regular Expression: regex golf
puzzle 3

● abac

● accede

● adead

● babe

● bead

● bebed

● bedad

● bedded

● bedead

● beam

● buoy

● canjac

● chymia

● corah

● cupula

● griece

● hafter

● idic

MATCH REJECT

[a-f]{4}

letters a-f occur 
4 times or more 
in a row.



  

Regular Expression: regex golf
puzzle 4

● lababab

● rabab

● nababababa

● laababi

● ababbaba

● abba

● rambam

● abraham

● abridge

● albright

● cab

● bracket

MATCH REJECT

abab occurs in 
these.



  

Regular Expression: regex golf
puzzle 4

● lababab

● rabab

● nababababa

● laababi

● ababbaba

● abba

● rambam

● abraham

● abridge

● albright

● cab

● bracket

MATCH REJECT

abab    or   (ab){2}

abab occurs in 
these.



  

Regular Expression: regex golf
puzzle 5

● wires

● these

● words

● maybe

● fives

● count

● doggy

● grump

● trips

● tight

● the

● word

● you

● need

● to

● reject

● doesn't

● have

● five

● letters

● in

● it

MATCH REJECT

match words 
have five.



  

Regular Expression: regex golf
puzzle 5

● wires

● these

● words

● maybe

● fives

● count

● doggy

● grump

● trips

● tight

● the

● word

● you

● need

● to

● reject

● doesn't

● have

● five

● letters

● in

● it

MATCH REJECT

^.{5}$

match words 
have five.



  

Regular Expression: regex golf
puzzle 7

● thingandthing
● stuffandstuff
● blahandblah
● abcabc
● tootleandpootle
● rappingandtapping
● beepbeep

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

some text, then 
maybe 
sometihng, then 
the same text 
again.



  

Regular Expression: regex golf
puzzle 7

● thingandthing
● stuffandstuff
● blahandblah
● abcabc
● tootleandpootle
● rappingandtapping
● beepbeep

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

(.{3,}).*\1

some text, then 
maybe 
sometihng, then 
the same text 
again.



  

Regular Expression: regex golf
puzzle 7

● thingandthing
● stuffandstuff
● blahandblah
● abcabc
● tootleandpootle
● rappingandtapping
● beepbeep

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

(.{3,}).*\1

some text, then 
maybe 
sometihng, then 
the same text 
again.



  

Regular Expression: regex golf
puzzle 8 - skip!



  

Regular Expression: regex golf
puzzle 9

● allochirally

● anticovenanting

● barbary

● calelectrical

● entablement

● ethanethiol

● froufrou

● furfuryl

● galagala

● heavyheaded

● linguatuline

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

two letter 
substring 
appears twice



  

Regular Expression: regex golf
puzzle 9

● allochirally

● anticovenanting

● barbary

● calelectrical

● entablement

● ethanethiol

● froufrou

● furfuryl

● galagala

● heavyheaded

● linguatuline

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

(..).*\1

two letter 
substring 
appears twice



  

Regular Expression: regex golf
puzzle 10

● abba

● toot

● roor

● dood

● meem

● alla

● trait

● repper

● pepper

● llill

● abab

● abbr

● rapr

● raari

● abbar

MATCH REJECT

^(.)(.)\2\1$

Whole string 
consists of two 
subexpressions, 
each of one letter 
repeated in 
reverse.



  

The Command Line



  

The bash command line interface 
(CLI)

● Tool which tells the computer commands by 
typing the commands at a command prompt.

● Allows complex commands that wouldn't be 
possible with a GUI, and allows repetitive tasks 
to be automated.

● Standard component of linux/unix systems.

● Lots of resources online, an easy start is at:

http://linuxcommand.org/learning_the_shell.php

The book associated with this is available on muele



  

The bash command line interface 
(CLI)

● Far too large a topic to cover in depth.
● Areas to cover:

– Navigation (cd, pwd, ls)

– The file system (/ /etc /bin /var /home /tmp /mnt )

– File manipulation (cp, mv, rm, mkdir)

– I/O redirection (stdin, stdout, pipes)

– Permissions

– Job Control

The book associated with this is available on muele

Beyond scope of 
course. The TLCL 
pdf tutorial covers 
these topics.



  

Install or connect remotely...

Installation:
– If you're using linux or unix you'll already have it.

– If you're using windows there are several choices:
● Install linux (e.g. ubuntu) dual-boot
● Install ubuntu as a virtual machine (e.g. using virtualBox)
● Install a toolset like cygwin
● I've included a slightly out-of-date cygwin-lite.exe
● Find a linux server you can access with ssh

● During the lecture you can ssh into my laptop...



  

Install or connect remotely...

● During the lecture you can ssh into my laptop:
– ip address: 10.10.?.? port 22

– Username:   advprog

– Password:   b4shpr4c

– Download putty to 
connect to it with.



  

The CLI: Navigation

● pwd - print working directory

● ls - list

● cd - change directory

● Try them out...



  

The CLI: Navigation

● pwd - print working directory

● ls - list

● cd - change directory



  

Changing directory

● In the last example we used a relative path:

        cd pythonwork

● We can also use the location's absolute path:

        cd /home/advprog/pythonwork

● /home/advprog is our home directory

– this can be referred to as ~

● For example, to get back to the home directory, type:

        cd ~

(note: just typing cd by itself also takes you back to 
the home directory)



  

Changing directory



  

advprog



  

Moving around the directory tree

● Relative paths let you go 'up' the tree, using ..
– For example cd .. moves 'up' one level.

● There is a folder called bashpractice in 
advprog's home directory.
– To get to it, from where-ever we are, we can use:

     cd ~/bashpractice

● Use ls to see what's in there.



  

Moving around the directory tree

● Use cd and ls to explore the tree, you can go 
down into a directory by typing, e.g. 

cd fiction

● You can go up a directory by typing cd ..

● You can also try going straight up and down by 
using cd ../nonfiction.

● What relative path would get from:
~/bashpractice/nonfiction/art

to

~/bashpractice/fiction/scifi



  

Moving around the directory tree

● Use cd and ls to explore the tree, you can go 
down into a directory by typing, e.g. 

cd fiction

● You can go up a directory by typing cd ..

● You can also try going straight up and down by 
using cd ../nonfiction.

● What relative path would get from:
~/bashpractice/nonfiction/art

to

~/bashpractice/fiction/scifi
cd ../../fiction/scifi



  

Moving around the directory tree

● Explore upwards as well, what is above your 
home directory?

cd ..

cd /

ls

Use tab-completion to type commands 
quickly.

Linux is case-sensitive.

Spaces in filenames make things difficult!

Files that start with a .  are hidden to see 
them use
          ls -a



  

Looking around

● We've already seen we can use ls to list the 
files in a directory.
– Try ls -l to list them in more detail.



  

Looking around

● We've already seen we can use ls to list the 
files in a directory.
– Try ls -l to list them in more detail.

drwxrwxr-x 4 advprog advprog 4096 Oct  4 19:25 bashpractice
drwxrwxr-x 2 advprog advprog 4096 Oct  4 19:10 pythonwork
-rw-rw-r-- 1 advprog advprog   59 Oct  4 19:08 welcome.txt
----------   ------- -------  --- ------------ -------------
permissions   owner   group  file mod-date/time  filename
                             size



  

Looking around

● Look in a text file with cat, less or nano



  

The file system again...



  

The file system again...



  

The file system again...



  

Manipulating files and directories

● cd to the ~/lesson directory

● In this directory make a folder with a folder 
name of just spaces, for yourself, e.g:
– mkdir mike

● Copy the darwin.txt file from ~/lesson to your 
new folder, e.g.:
– cp ~/lesson/darwin.txt ~/lesson/mike

– You can do this using relative paths! So if I'm in the 
lesson folder, I can copy the file with:

cp darwin.txt mike



  

Manipulating files and directories

● Danger! Linux will copy the file 
and overwrite files without asking 
or warning you!



  

Manipulating files and directories

● Display the contents of the file in your own folder 
with cat, less or nano.

● Can use wildcards to copy or move selections of 
files...

● In the ~/lesson/test folder there are 9 files, each 
for a different (fictitious) student. How can we 
copy just the failed ones to our folder?

cd ~/lesson/test

cp *fail* ../mike

● Not quite the same as regular 
expressions though!!!



  

Manipulating files and directories

● Other commands of use:
– rm a    remove a - DANGER: This deletes without 

asking or checking, and is irreversible (no recycle 
bin!)

– rm -r a   recursively remove a (required when 
deleting directories)

– mkdir a  make directory called a

– cp a .   copy a to the current directory.

– cp -r a b   copy recursively (allows directories 
to be copied).

– mv a b   move a to b (also used to rename files)



  

Random commands to try out...

● date - gives the date and time

● which ls - tells you which file a particular command runs, in 
this example looking at 'ls'

● man grep - displays the manual page for a command.

● Up until now, the commandline doesn't seem to have 
provided much use beyond what a graphical interface can 
achieve. In next week's lecture we'll look at some of its more 
powerful tools.



  

Homework

● Submit your assignment (before Friday!)
● Go through the bash things we've learnt, 

chapters 1-5 of the TLCL pdf.
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