

Advanced Programming

Advanced Programming

Mike Smith

Email: msmith@cit.ac.ug

Office hours: ??

Find me in the AI Lab: Level 6 – block B

Also why not come to the AI Lab's weekly
presentations? Thursdays at 10am

● Before we get started, let's get python
installed and working.

● Python is a computer programming
language which supports:
– Object Orientation

– Functional Programming

– Automatic Memory Management

● To get it working we need the python interpreter and a
way of editing and running python code.

● So need to install idle, an integrated development
environment (IDE) for python.

● Idle's quite basic, but is quick and easy to install and use.

Getting python working...

Guido van Rossum,
the creator of Python

image: wikipedia

Installing idle, for ubuntu

1. open a terminal and type:
:~$ sudo aptget install idle
[sudo] password for lionfish:
Reading package lists... Done
Building dependency tree
... etc ...
The following NEW packages will be installed
 idle idlepython2.7
0 to upgrade, 2 to newly install, 0 to remove ... etc ...
After this operation, 1,165 kB of additional disk
space will be used.
Do you want to continue? [Y/n]
2. Enter Y
3. Once installed, click on the ubuntu button and type in idle
4. Click on 'IDLE'

Type in your
password here

Things are easier in ubuntu than
in windows (no malware, easier
installs, runs quicker, free, etc).

Installing idle, for Windows
1. Go to www.python.org/download
2. Click the 2.7.x version

3. Click either on x86 MSI Installer or X86-
64 MSI Installer:

15.9Mb
download...

Am I running 32 or 64 bit windows?
● Computers running Windows XP

– Click Start, right-click My Computer, and
then click Properties.

– The edition of Windows XP you're running
is displayed under System near the top of
the window.

– If it doesn't say "x64 edition" then it is
probably running 32 bit windows.

● Computers running Windows Vista
or Windows 7
– Click the Start button, right-click

Computer, and then click Properties.

– The version is listed next to "System type"

http://www.python.org/download

Installing idle (for windows,
continued)

Check it works

● Once idle is open, try the hello world program:

Python 2.7.6 (default, Mar 22 2014, 22:59:56)

[GCC 4.8.2] on linux2

Type "copyright", "credits" or "license()" for more
information.

>>> print "Hello World"

Hello World

>>>

About the Course

● Getting started with Python
● Object orientation
● Text processing (regular expressions)
● Databases
● Web Programming

– Security/Vulnerabilities

– Content Management Systems (maybe)

● Version Control (maybe)
● Using Linux/unix (maybe)
● Coding for microprocessors (maybe)
● XML (maybe)

This might change depending on the speed we can get through the content...

About the Course

● Assessment:
– 40% coursework

– 60% final exam

● The course will be mostly practical, with a few
mini-lectures, every so often.

About the Course

The course covers diverse topics. Throughout
the course we should be thinking about how to
make our code:

Robust Secure

Efficient Maintainable

Robustness

“The ability of a computer
system to cope with errors

during execution”
● Ariane 5: $500M - 1996
● Used code from Ariane 4 –

that wasn't retested
properly...

● Concentrated on Efficiency
– so removed a check on
the size of a number (the
horizontal speed).

● Tried to store this value in
a space that was too small
(2 bytes of memory).

Robustness

● Expect the unexpected.
● Test your code.
● Get someone else to test it some more.

Security

● Vulnerabilities come
in many forms.

● Don't underestimate
'social engineering',
i.e. tricking the
administrator or
user.

● Largest recent
vulnerability was
Heart Bleed.

“Defending information from unauthorised
access, disruption or destruction”

Security

● 17.5% of SSL servers had
this bug – this includes
many 'big' sites (e.g.
google, yahoo, dropbox...)

● Easily exploited.

● It allowed an attacker to
gain huge amounts of data
(including potentially the
server's own keys)

● Attacks don't leave a trace
(this type of packet
typically isn't logged).

● The vulnerability was there
for two years before it was
fixed...

SSL = Secure Sockets Layer
Used eg. When you go to any
https:// sites (eg your email)
OpenSSL is an implementation
of this protocol.

Security

“In the worst-case scenario, criminal enterprises,
intelligence agencies, and state-sponsored hackers
have known about Heartbleed for more than two
years, and have used it to systematically access
almost everyone’s encrypted data. If this is true,
then anyone who does anything on the Internet has
likely been affected by the bug.”

http://www.newyorker.com/tech/elements/t
he-internets-telltale-heartbleed

● The Heartbeat
extension allows a
 client to check
the connection by
sending a
message which
the server echos
back.

● The client tells the
server how long
the message is...

● ...the problem is
the server
believes them.

Security

xkcd.com

Security

Code from the dtls1_process_heartbeat
function, in ssl/d1_both.c

Get the size of the
payload from the
client's packet (store
its size in 'payload')

Copy the
payload into
the packet to
send back...

1462 /* Read type and payload length first */
1463 hbtype = *p++;
1464 n2s(p, payload);
1465 pl = p;
 :
1477 /* Allocate memory for the response, size is 1 byte
1478 * message type, plus 2 bytes payload length, plus
1479 * payload, plus padding
1480 */
1481 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
1482 bp = buffer;
1483
1484 /* Enter response type, length and copy payload */
1485 *bp++ = TLS1_HB_RESPONSE;
1486 s2n(payload, bp);
1487 memcpy(bp, pl, payload);
1488 bp += payload;
 :
1492 r = dtls1_write_bytes(s,

TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);

Maintainable

● Plan before you start coding
– Work out the components and what needs access to what: Avoid “build-then-

plan”

● Structured
– Split into smaller functions and classes.

● Consistent
– Indentation, variable names, etc – use a rule and stick to it.

● Understandable?
– Use comments: Explain what chunks of code do & use good names

● Don't duplicate code
– If you find you've written similar code twice, you should have put it in a function

and called it twice.

● Share/discuss code
– If you're working with someone else, you have to make your code good for them.

Back to python and idle

● We've run 'hello world', but now to run it from a
source file.
– Create a folder to put your python code in

– Click File → New File (in idle)

– Type into the new file:

print “hello world”;
– Save as helloworld.py

– Click Run → Run Module

Work through Chapter 3

● #Comments
● Numbers,

– Integer division? 7/3

– Floating point? 7.0/3

– Assignment: area = width*height;

● Define before use

3.1.1 Numbers

● 3.1.1 Numbers
● 3.1.2 Strings

● 3.1.4 Lists
● 3.2 Programming

Hint: Tab complete!
If a variable's been
defined, start typing it
and then press the
'tab' button to let idle
finish it for you.

3.1.2 Strings

● Can use 'single' or “double” quotes

● Escaping quotes 'They\'re simple'

● Other features: r“r\a\w\” “““ ”””

● Concatenate: 'hello' + ' ' + 'world'

● ' test '.strip() removes white space

● Accessing elements of an array, use slice notation:
 #01234567 (from start)

 #76543210 (from end)

msg = 'Advanced'

print msg[2:5] #gets items 2,3,4

print msg[2:] #gets items 2,3,4,5,6,7

print msg[-6:-3] #gets -5,-4,-3

Also see unicode
for future reference

3.1.4 Lists

● Breakfast = ['eggs','toast','fruit',5]

● Same instructions can happen to lists as strings
● Breakfast[0]

– 'Eggs'

● Breakfast[-1]

– 5

● Breakfast[0] = 'honey'; #can change

● Breakfast[-1:] = [] #delete last item

● Breakfast[0:2] = ['muesli','juice']

● Breakfast

– ['muesli', 'juice', 'fruit']

3.1.4 Lists (cont)

● len(Breakfast)

– 3

● Morning = [Breakfast,'wash','go out']

● Morning

– [['muesli', 'juice', 'fruit'], 'wash', 'go out']

● Breakfast[-1:] = [] #remove last (fruit)

● Breakfast

– ['muesli', 'juice']

● Morning

– [['muesli', 'juice'], 'wash', 'go out']

● #fruit is missing from Morning too now

● Morning.append('dance') #etc...

3.2 Programming: fibonacci

● See tutorial.pdf (page 17)

● While loop (indentation!)

● Multiple assignment

a, b = 1, 2

● Printing
– difference between

print x

print x,

Write your program in a new file,
fibonacci.pywhile b < 10:

print b
a, b = b, a+b Advantages and disadvantages of this

way of writing the two assignments?

4.1. if statement...

● Problem: Write a program that works out a patient's BMI (body mass index) for a
nutritionist to use.

● The program needs to ask for the patient's height and weight, e.g. using
something like: x = int(raw_input("Please enter an integer: "))

● Then can use the equation:

(to square something, use: x**2)

● Finally print if the person is:
– Underweight (bmi<18.5)

– normal range (18.5<bmi<25)

– overweight (bmi>25)

– You'll need to use the if statement,
if (x<=10):

print “x is less than or equal to ten.”
elif (x==12):

print “x is twelve.”
else:

print “x is more than ten and not twelve.”

Robust?

● Is your program
robust?
– Try entering a

floating point?

– What about a height
of zero?

– What about text
instead of numbers?

Exceptions

● A quick detour to
chapter 8.3:
Exceptions.

● You need to decide
how to deal with
exceptions,

try:
 bmi = weight/(height**2)
except ZeroDivisionError:
 print "Need a non-zero height"

Exceptions

try:
 msg = input("Height: ");
 height = float(msg);
 bmi = weight/(height**2);
 print bmi;
except ZeroDivisionError:
 print "Need a non-zero height"
except NameError:
 print "Need a number"

4.2. loops

● Loop through a list...
– For x in [3,1,4]:

● Loop through a list (making a
copy)...
– For x in data[:]:

● Problem:
– Count the number of times the letters

e and q occur in a text corpus.

– Download darwin.txt (the
introduction to On The Origin of
Species) from muele or from:

http://129.215.142.66/darwin.txt

4.2. loops

● To read the file use:

– content = open('darwin.txt','r').read()

● Maybe set a variable to zero and use it to count if a letter is 'e'

● To output you can use this format:

print “This is an integer: %d” % (number)

4.2. loops

content = open('darwin.txt','r').read()

countOfEs = 0;
countOfQs = 0;
for letter in content:
 if (letter=='e'):
 countOfEs+=1;
 if (letter=='q'):
 countOfQs+=1;

print "There were %d Es and %d Qs" % (countOfEs,countOfQs)

4.2.-4.5. loops

for x in range(10):
print x

Breakfast = ['fruit','bun','juice','toast','cornflakes','honey']
for i, food in enumerate(Breakfast):
 if (len(food)<5):
 continue;
 if (len(food)>5):
 break;
 print i, food

0 fruit
2 juice
3 toast

Other features:
- else
- pass

4.6. Functions

● Look at section 4.6 in the tutorial (page 21pp).

● Problem:
– Alter your bmi and darwin programs to use

functions.

def myFunction(n):
stuffInFunctionHere();

Next week

● Object Orientation and Text Processing (regexp)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

