

Advanced Programming
Lesson 2:

Regular Expressions (10.5)
and

Classes (chapter 9)

Connect to:

network_lab
Password:

network3b
Head to:

10.10.6.37

Inheritance (2)

● Last lecture there were questions about how to call
a parent class' method.

● In the simple example we just overrode the original
tostring() method, without calling the original.

● We can call the parent class' method by using the
super method:

class MastersStudent(Student):
 def tostring(self):
 description = super(MastersStudent,self).tostring()
 description = description + ' (M)'
 return description

We put the name of the current class here

Inheritance (2)

● To make this work though we need to modify
the parent class slightly, to descend from the
object class:

class Student(object):
 def __init__(self,firstname,lastname,regno):
 self.firstname = firstname
 self.lastname = ... etc etc ...

Regular Expressions
Regular expressions let you search and replace text.

xkcd

Regular Expressions

● Regular expressions are useful to process strings. You
can search or alter text with them.

● First, a simple example:
– To use them in python we need to import the regular

expressions library:

 import re

– Example regexs:

 print re.search('all','bAll')

 re.findall('al*','balance allowed')
● ['al', 'a', 'all']

Regular Expressions

 re.findall('al*','balance allowed')
● ['al', 'a', 'all']

Regular expression String being searched

Regular Expressions:
Metacharacters: .*^$+?[](){}|\

tre*

The * is an example of a metacharacter.

The * (asterisk or star) matches when the preceding
character occurs 0 or more times,

For example, tre* will find:
tree (e is found 2 times)
tread (e is found 1 time)
trough (e is found 0 times).

Regular Expressions:
Metacharacters: .*^$+?[](){}|\

tre+

The + matches when the preceding character occurs
1 or more times (notice this is slightly different from
the * which matches zero or more times).

For example, tre+ will find:
tree (e is found 2 times)
tread (e is found 1 time)
trough (e is found 0 times). This is not found as

with a + it needs to
appear at least once

Regular Expressions

● Work through the regexp pdf:
– First, [character class] [^complement]

– Special sequences
● \d digits
● \s spaces
● \w alphanumeric
● . Anything.

– Repetitions a* a+ a?

Regex Golf

import regexgolf

print regexgolf.puzzlewords(1)['matchwords']

print regexgolf.puzzlewords(1)['rejectwords']

regexgolf.verifypuzzle('regex_here',1)

● The aim is to match the 'matchwords' and not match the reject words:

matchwords:['buffoon', 'foody', 'foolish', 'fool', 'catfoot', 'afoot',
'footlights', 'footmen', 'seafood']

rejectwords:['crinkle', 'palace', 'wildfowl', 'critical',
'spontaneous', 'forget', 'info']

Error: should match but did not: fool, footmen, seafood, catfoot,
footlights, buffoon, foody, foolish, afoot

Classes etc...

● Look through chapter 9 to get an idea about
classes...

● Download the students.py file
● Modify the classes in the following ways:

– Add a new attribute to the Student class, regyear
(year of registration).

– Create a new class Lecturer, and extend the
definition of the Course class so that lecturers can be
added.

End of week 2's lecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

