

Regular Expressions
Practical Example: Where does a

page link to?
● Download the apod example (apod.html)

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the tags in the webpage's HTML.

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the
 tags in the webpage's
HTML.

● Hint - Open the file with:
– content = open('apod.html','r').read()

● In future could read it from the website:
import urllib
url = 'http://apod.nasa.gov/apod/ap141001.html'
webpage = urllib.urlopen(url)
html = webpage.read()

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the
 tags in the webpage's
HTML.

● Open the file with:
– content = open('apod.html','r').read()

● Hint – re.findall with a subexpression will
return a list of all the examples of that
subexpression in the input string.

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('',content)

print "\n".join(a)

...
http://hubblesite.org/servicing_mission_4/
mailto:%20Francesco%20dot%20antonucci%20at%20fastwebnet%20dot%20it
http://apod.nasa.gov/apod/ap120929.html
...
http://www.phy.mtu.edu/
http://antwrp.gsfc.nasa.gov/htmltest/jbonnell/www/bonnell.html">Jerry Bonnell
(<a href="http://www.astro.umd.edu/
http://apod.nasa.gov/apod/lib/about_apod.html#srapply
..

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('',content)

print "\n".join(a)

● Fix regular expression...
''

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('',content)

print "\n".join(a)

● Fix regular expression...
''

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('',content)

print "\n".join(a)

● Fix regular expression...
''

Regular Expressions:
Practical Example: Where does a

page link to?
● Write a regular expression that looks for the tags in the webpage's HTML.

content = open('apod.html','r').read()

a = re.findall('',content)

print "\n".join(a)

● Fix regular expression...
''

– Could also match both " and ' using ["\']?

Regular Expression: regex golf
puzzle 1

● buffoon

● foody

● foolish

● fool

● catfoot

● afoot

● footlights

● footmen

● seafood

● crinkle

● palace

● wildfowl

● critical

● spontaneous

● forget

● info

MATCH REJECT

Regular Expression: regex golf
puzzle 1

● buffoon

● foody

● foolish

● fool

● catfoot

● afoot

● footlights

● footmen

● seafood

● crinkle

● palace

● wildfowl

● critical

● spontaneous

● forget

● info

MATCH REJECT

foo

Regular Expression: regex golf
puzzle 2

● mick

● rick

● trick

● candlestick

● crick

● strategic

● tricked

● picked

● icky

● yickicky

MATCH REJECT

Regular Expression: regex golf
puzzle 2

● mick

● rick

● trick

● candlestick

● crick

● strategic

● tricked

● picked

● icky

● yickicky

MATCH REJECT

ick$

Regular Expression: regex golf
puzzle 3

● abac

● accede

● adead

● babe

● bead

● bebed

● bedad

● bedded

● bedead

● beam

● buoy

● canjac

● chymia

● corah

● cupula

● griece

● hafter

● idic

MATCH REJECT

letters a-f occur
4 times or more
in a row.

Regular Expression: regex golf
puzzle 3

● abac

● accede

● adead

● babe

● bead

● bebed

● bedad

● bedded

● bedead

● beam

● buoy

● canjac

● chymia

● corah

● cupula

● griece

● hafter

● idic

MATCH REJECT

[a-f]{4}

letters a-f occur
4 times or more
in a row.

Regular Expression: regex golf
puzzle 4

● lababab

● rabab

● nababababa

● laababi

● ababbaba

● abba

● rambam

● abraham

● abridge

● albright

● cab

● bracket

MATCH REJECT

abab occurs in
these.

Regular Expression: regex golf
puzzle 4

● lababab

● rabab

● nababababa

● laababi

● ababbaba

● abba

● rambam

● abraham

● abridge

● albright

● cab

● bracket

MATCH REJECT

abab or (ab){2}

abab occurs in
these.

Regular Expression: regex golf
puzzle 5

● wires

● these

● words

● maybe

● fives

● count

● doggy

● grump

● trips

● tight

● the

● word

● you

● need

● to

● reject

● doesn't

● have

● five

● letters

● in

● it

MATCH REJECT

match words
have five.

Regular Expression: regex golf
puzzle 5

● wires

● these

● words

● maybe

● fives

● count

● doggy

● grump

● trips

● tight

● the

● word

● you

● need

● to

● reject

● doesn't

● have

● five

● letters

● in

● it

MATCH REJECT

^.{5}$

match words
have five.

Regular Expression: regex golf
puzzle 7

● thingandthing
● stuffandstuff
● blahandblah
● abcabc
● tootleandpootle
● rappingandtapping
● beepbeep

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

some text, then
maybe
sometihng, then
the same text
again.

Regular Expression: regex golf
puzzle 7

● thingandthing
● stuffandstuff
● blahandblah
● abcabc
● tootleandpootle
● rappingandtapping
● beepbeep

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

(.{3,}).*\1

some text, then
maybe
sometihng, then
the same text
again.

Regular Expression: regex golf
puzzle 7

● thingandthing
● stuffandstuff
● blahandblah
● abcabc
● tootleandpootle
● rappingandtapping
● beepbeep

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

(.{3,}).*\1

some text, then
maybe
sometihng, then
the same text
again.

Regular Expression: regex golf
puzzle 8 - skip!

Regular Expression: regex golf
puzzle 9

● allochirally

● anticovenanting

● barbary

● calelectrical

● entablement

● ethanethiol

● froufrou

● furfuryl

● galagala

● heavyheaded

● linguatuline

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

two letter
substring
appears twice

Regular Expression: regex golf
puzzle 9

● allochirally

● anticovenanting

● barbary

● calelectrical

● entablement

● ethanethiol

● froufrou

● furfuryl

● galagala

● heavyheaded

● linguatuline

● granulation

● secret

● solution

● bumbling

● transient

● rectilinear

● convolve

MATCH REJECT

(..).*\1

two letter
substring
appears twice

Regular Expression: regex golf
puzzle 10

● abba

● toot

● roor

● dood

● meem

● alla

● trait

● repper

● pepper

● llill

● abab

● abbr

● rapr

● raari

● abbar

MATCH REJECT

^(.)(.)\2\1$

Whole string
consists of two
subexpressions,
each of one letter
repeated in
reverse.

The Command Line

The bash command line interface
(CLI)

● Tool which tells the computer commands by
typing the commands at a command prompt.

● Allows complex commands that wouldn't be
possible with a GUI, and allows repetitive tasks
to be automated.

● Standard component of linux/unix systems.

● Lots of resources online, an easy start is at:

http://linuxcommand.org/learning_the_shell.php

The book associated with this is available on muele

The bash command line interface
(CLI)

● Far too large a topic to cover in depth.
● Areas to cover:

– Navigation (cd, pwd, ls)

– The file system (/ /etc /bin /var /home /tmp /mnt)

– File manipulation (cp, mv, rm, mkdir)

– I/O redirection (stdin, stdout, pipes)

– Permissions

– Job Control

The book associated with this is available on muele

Beyond scope of
course. The TLCL
pdf tutorial covers
these topics.

Install or connect remotely...

Installation:
– If you're using linux or unix you'll already have it.

– If you're using windows there are several choices:
● Install linux (e.g. ubuntu) dual-boot
● Install ubuntu as a virtual machine (e.g. using virtualBox)
● Install a toolset like cygwin
● I've included a slightly out-of-date cygwin-lite.exe
● Find a linux server you can access with ssh

● During the lecture you can ssh into my laptop...

Install or connect remotely...

● During the lecture you can ssh into my laptop:
– ip address: 10.10.?.? port 22

– Username: advprog

– Password: b4shpr4c

– Download putty to
connect to it with.

The CLI: Navigation

● pwd - print working directory

● ls - list

● cd - change directory

● Try them out...

The CLI: Navigation

● pwd - print working directory

● ls - list

● cd - change directory

Changing directory

● In the last example we used a relative path:

 cd pythonwork

● We can also use the location's absolute path:

 cd /home/advprog/pythonwork

● /home/advprog is our home directory

– this can be referred to as ~

● For example, to get back to the home directory, type:

 cd ~

(note: just typing cd by itself also takes you back to
the home directory)

Changing directory

advprog

Moving around the directory tree

● Relative paths let you go 'up' the tree, using ..
– For example cd .. moves 'up' one level.

● There is a folder called bashpractice in
advprog's home directory.
– To get to it, from where-ever we are, we can use:

 cd ~/bashpractice

● Use ls to see what's in there.

Moving around the directory tree

● Use cd and ls to explore the tree, you can go
down into a directory by typing, e.g.

cd fiction

● You can go up a directory by typing cd ..

● You can also try going straight up and down by
using cd ../nonfiction.

● What relative path would get from:
~/bashpractice/nonfiction/art

to

~/bashpractice/fiction/scifi

Moving around the directory tree

● Use cd and ls to explore the tree, you can go
down into a directory by typing, e.g.

cd fiction

● You can go up a directory by typing cd ..

● You can also try going straight up and down by
using cd ../nonfiction.

● What relative path would get from:
~/bashpractice/nonfiction/art

to

~/bashpractice/fiction/scifi
cd ../../fiction/scifi

Moving around the directory tree

● Explore upwards as well, what is above your
home directory?

cd ..

cd /

ls

Use tab-completion to type commands
quickly.

Linux is case-sensitive.

Spaces in filenames make things difficult!

Files that start with a . are hidden to see
them use
 ls -a

Looking around

● We've already seen we can use ls to list the
files in a directory.
– Try ls -l to list them in more detail.

Looking around

● We've already seen we can use ls to list the
files in a directory.
– Try ls -l to list them in more detail.

drwxrwxr-x 4 advprog advprog 4096 Oct 4 19:25 bashpractice
drwxrwxr-x 2 advprog advprog 4096 Oct 4 19:10 pythonwork
-rw-rw-r-- 1 advprog advprog 59 Oct 4 19:08 welcome.txt
---------- ------- ------- --- ------------ -------------
permissions owner group file mod-date/time filename
 size

Looking around

● Look in a text file with cat, less or nano

The file system again...

The file system again...

The file system again...

Manipulating files and directories

● cd to the ~/lesson directory

● In this directory make a folder with a folder
name of just spaces, for yourself, e.g:
– mkdir mike

● Copy the darwin.txt file from ~/lesson to your
new folder, e.g.:
– cp ~/lesson/darwin.txt ~/lesson/mike

– You can do this using relative paths! So if I'm in the
lesson folder, I can copy the file with:

cp darwin.txt mike

Manipulating files and directories

● Danger! Linux will copy the file
and overwrite files without asking
or warning you!

Manipulating files and directories

● Display the contents of the file in your own folder
with cat, less or nano.

● Can use wildcards to copy or move selections of
files...

● In the ~/lesson/test folder there are 9 files, each
for a different (fictitious) student. How can we
copy just the failed ones to our folder?

cd ~/lesson/test

cp *fail* ../mike

● Not quite the same as regular
expressions though!!!

Manipulating files and directories

● Other commands of use:
– rm a remove a - DANGER: This deletes without

asking or checking, and is irreversible (no recycle
bin!)

– rm -r a recursively remove a (required when
deleting directories)

– mkdir a make directory called a

– cp a . copy a to the current directory.

– cp -r a b copy recursively (allows directories
to be copied).

– mv a b move a to b (also used to rename files)

Random commands to try out...

● date - gives the date and time

● which ls - tells you which file a particular command runs, in
this example looking at 'ls'

● man grep - displays the manual page for a command.

● Up until now, the commandline doesn't seem to have
provided much use beyond what a graphical interface can
achieve. In next week's lecture we'll look at some of its more
powerful tools.

Homework

● Submit your assignment (before Friday!)
● Go through the bash things we've learnt,

chapters 1-5 of the TLCL pdf.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

